8.333 Fall 2025 Recitation 4: Kinetic theory recap

Jessica Metzger
jessmetz@mit.edu | Office hours: Tuesday 4-5pm (2-132)

These notes are largely a conglomeration of the previous years’ recitation notes by Julien Tailleur, Amer Al-Hiyasat,
and Sara Dal Cengio.

References. All the essential information in these recitations can be found in Chapter 3 of Mehran Kardar’s Statistical
Physics of Particles. Also see lectures 7-9 of his 8.333 OCW notes, and lectures 4-10 of Julien Tailleur’s notes.
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I. INTRO, DEFINITIONS AND NOTATIONS

We are concerned with extremely the high-dimensional problem of many-particle (N > 10%%) Hamiltonian dynamics.
How do we reduce the complicated microscopic dynamics to the simpler evolution of macroscopic quantities?

Work with N particles in 3 dimensions. Suppose particle i has position q; = (¢f,¢{,q¢7) and momentum p; =
(p7,pY,p}). (On the blackboard, I use replace the boldfaced letter with the arrow version, i.e. q; — ¢.) Use the
notation

Q=(q1,92,...,9n) , P = (p1,p2,---,PN), I'=(qi,...,9n,P1,---,PN) - (1)
Also make the definitions
QG =4 —9q;, ¢ =layl,  pi=Ipid,  dli=dqd’p; . (2)
The particles evolve under Hamiltonian dynamics with the Hamiltonian

N

2 N
HQP) =Y [pm ICORESS V(ql-j)} = HI(QP)+ 533 Viay) (3)
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In particular, we consider a two-body interaction potential V' (¢g) which is spherically symmetric, i.e. only depending
on ¢ rather than q. Also define

Ui=U(a), Vii = V(gij) - (4)

We will use the Poisson bracket, which for operators A(Q,P) and B(Q, P) is defined as

(Apy=3"[P4 0B 04 9B) 0A 9B 04 0B
T & 0 Opi Opi Oqi]  9Q 0P 9P 0Q
It has the following properties (for operators A, B, C and scalar \), which we will use:
{B, A} = —{A, B} (antisymmetry) (6)
{A,B+)C} ={A,B}+ \A,C} (bilinearity) (
{A+ \C,B} ={A,B} + \M{C, B} (bilinearity) . (
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The probability density over phase space p(Q, P;t) is the probability density of particles at phase space point (Q, P)
at time ¢. It evolves according to the Liouville equation, whose derivation proceeds as follows:

dp

0= pr (Liouville theorem) (9)
o O O 00 O 00 O 0y i,
“a T Q T TP aq aq op o A (10)
Jdp 1 . . .
=5t {H1,p}+ 5 ; ;{Vij, P} (Bilinearity of Poisson bracket) . (11)

The last term can be re-written by re-indexing and using the symmetry of V;; = Vj;:

1o vy 0 oV, v, 0 Al oV,
) NITWIEES 3) 3 LA R ARES 3 ol KA A SR S e

i=1 i i=1 j£i k=1 i=1 jAi O 6‘p1 9q; Op;

Thus, we find the Liouville equation

aVz
Z ! (Liouville’s equation) (13)
JFi

+{/17H1} Z

opi

The left-hand side includes the one-body effects, such as advection due to the P and the flows under U. The right-hand
side accounts for transfer of probability due to interactions. The Liouville equation is exact.

II. THE BBGKY HIERARCHY

The Liouville equation (13) for the probability density over the 6 /N-dimensional phase space contains way too much
information. We are interested in macroscopic quantities, like the average kinetic energy of the gas

N N
1 p2 1 2 1 2 1 2
KE. =(— LN = 2y = — dlip(Q,P;t)p2 = — [ dT pLb)p?, 14
< N;:l 5 > (p1) /il_l1 p(Q, P;t)py / 1p1(a1, P13 t)py (14)

where we have used the indistinguishability of the particles, and defined the 1-body probability density as the marginal
probability density

1(ai, pi;t /Hszp Q,P;t) (15)

Observables like Eq. (14) are one-body properties, which only require p;, which is over a space of much lower dimension.
Thus, it is sensible to look for the evolution of p;.

Using the Liouville equation (13), we find

ap1 /HdFZpQPt /HdF [{Hl,p}—i—z 9o ;avﬂ“]. (16)

i>2 Pj aqj

E@ 7@

Calculating each term individually, we have

o- | (i - 2) Sl )]

s dp1 Op1 Oq dq; 9p; Ip; Iq;
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Because 0H;/0q; and OHy/0p; only depend on q; and p;, the integral over qs,qs, etc. and pa, ps, etc. passes
through it, and we have

8H1 8p1 8H1 6p1
.‘b = — — —— . — ={H;, . 18
8q1 6p1 op1 3(]1 { ! p1} ( )

For part , we use the fact that 0H1/0q; doesn’t depend on p;, and 0H,/Jp; doesn’t depend on q; to write
OH 0 OH
O g [ ()4 ()
i>2  j>2 op; \0q; 0q; \ 0p;

since the integral over a total derivative is zero (assuming there are no boundary terms, which is true for either
periodic boundary conditions or a normalizeable p in open boundary conditions!).

Term @, the interaction term, is also simplified by splitting the indices between j =1 and j > 1:

o [ gty

i>2 k#1 j>2 P; k+#j

Term can be simplified using the indistinguishability of particles k # 1:

: /H Op OVip — (N1 /dr2gpz Vi 7 1)
i>2

"Op1  Oqu p1  Oq:

where we have defined the 2-body probability density

p2(d1,d2, P1, P2it) = /HdFm(Q,P;t)- (22)

i>3

Finally, term is zero for the same reason as term (19):
@)= [Ty o (r 52 ) =0 29
kg O

i>2 j>2 Pj

Thus, we find the overall 1-body evolution equation

p2 OVis
op1 9Oq;

0
;tl +{p1, Hi} = (N —1)/dF2

(24)

This contains much less information than the Liouville equation (13). It is almost closed in p;, but has the annoying
pa-dependence on the right-hand side. Intuitively, this is because the probability density of a single particle can’t be
understood without accounting for the joint probability density of it encountering another particle. Unfortunately,
p2(d1, 492, P1,P2) # p1(ai, p1)p1(qz, p2) since the particles are not independent. For example, for repulsive interac-
tions, p2(q,q,p,p’) < p1(q,p)p1(q,p’) since having one particle at location q makes it less likely to have another
particle there.

To find the evolution of ps, we can make a similar calculation to Egs. (16)-(24). Sparing you the details, the final
answer is

8p2
ot

8p3 ) oVis % ) OVa3
op1 Oqi  Op2 Oqq

+ {p2, H1 + Vi2} = (N — 2) /dF?,[ (25)

The 2-body equation contains dependence on the 3-body density. Likewise, the evolution of the 3-body density will
depend on the 4-body density, and so on. This is the BBGKY hierarchy. Because we are only interested in macroscopic,
few-body obervables, we must truncate this hierarchy somewhere, using some physically-motivated approximation.
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III. THE BOLTZMANN EQUATION

Let’s define the number densities

fi(ai,p1,t) = Npi(ai, p1;t) (26)
fa(q1,92,P1, P2, t) = N(N — 1)p2(qi, a2, P1, P2; t) (27)
NI

fs(qla"'aq87p1a"'7p87t) mps(qlv"'aq87p15"'aps;t)' (28)

These are no longer probability densities. The normalization condition for f; is, for example,
/drlfl(qlvplat) =N. (29)

Now let’s write out the 2-body equation for fa(qi1,q2,P1,Pp2) explicitly:

f2 p1 , Ofs P2 {% ~oUy %.3(]2} B {3132 an] Vi :/ng{aﬁ)’-avls +% Va3

f2 oq1 m dq2 m op1 Oqu op2 0q op1 op2 dq; op1 Oqy op2 Oqq

BG B -® -®

(30)

where we have used the fact that 9Vi5/9qs = —0Vi12/0q; .

We will now use dimensional analysis to guess which terms from this equation are the most important. For a gas at
room temperature, there are a convenient series of scale separation that make this easy. (This is where the applicability
of these calculations to other many situations—e.g. astrophysics—breaks down, since long-range interactions and
higher densities mess things up.)

Air molecules at room temperature have typical velocities of v ~ 10%m/s and interaction radii of d ~ 10~1%m. Thus,
the time it takes a collision to occur 7. ~ d/v ~ 107125 is very small compared to, say, the time it takes a molecule to
cross a box U(q) of length 1m, 7y &~ L/v ~ 10~2s. The density of air is also very low: n = N/V ~ 10%%/m3 < 1/d3.
Thus, the distance a particle typically travels between collisions, f\p or the “mean-free path”, is large compared
to d. This can be estimated by considering the volume ¢ypmd? swept out by a particle traveling this distance, and
comparing it to the typical volume one must search before encountering a particle, V/N:

\%4 1

This is given by fyr ~ 107%m. The mean-free time is then given by myr = fyr/v ~ 10~ 8m.
We have found three processes, each well-separated from the other in terms of length and time-scales:
Te L TmF L TU d<bur < Ly . (32)

These are summarized by the following table:

Process

Length scale

Time scale

Collisions

d~10"10m

7.~ 107 12g

Free motion
between collisions

Iyr ~ 107 5m

™F ~ 10785

Effects of U(q)

by =~ 1m

v ~ 10725

The Boltzmann equation, which we will now derive, exploits these two separations of length and time scale.

Now let’s return to Eq. (30) and examine it term-by-term. All terms have dimension T-'N2L=6. Let V, U, and KE
indicate the energy scales of V(q), U(q), and p?/2m respectively. Also suppose that the system size is comparable to

4
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i, so that fo ~ (N/£3)2. Finally, define a new “length scale of interest” ¢ < {7, such that dfs/0q; ~ fo/¢. We find
the approximate scaling of each term

N\?1 1
~ KE[=>) >—
© (f%) £ mu (33)
1 /N\?1 U ¢
1/N\*1
® ~ val#) m )
@ /Vl N’ vl (N 3i Nd—3® < ® (36)
d E?] d é?j muv Z?]

We can thus eliminate term @, since the gradients of the external potential are chosen to be significantly smaller
than those of fs (and the potential energy U is at most comparable with the kinetic energy). We can also, crucially,
eliminate term (4), since it is smaller than term (3) by a factor of nd®> ~ 107* < 1. Since (4) contains all the
fs-dependence, we have thus truncated the BBGKY hierarchy.

We are left with the new equation

oo |2z O8] O Ok p1 0% p:

op1 op2 0q 0q E_ai(h m’ (37)

where the = sign should really be an ~ but we will (semi-phenomenologically) pretend the strict equality holds from
now on.

Let’s simplify 9f2/0q; further. We can change the coordinates qi1, g2 to g+ = (q1 +q2)/2 and q = q1 — g2, and note
that (suppressing the p dependence)

df2 Ofy  0fa df2 afy  0Ofa
= =2y 22 ==l 38
oq1 dqy  Oq daz  dqy  Oq (38)

Since the gradient fo with respect to q is of the order 1/d while variations with respect to q are the inverse of a
meso- or macroscopic lengthscale (e.g. ~ 1/£), we can neglect the 9/0q, terms, and approximate

Oh _0f  Oh_ 0 0h i O m_ 05 (mi_ )
oqi oq ' dq2 dq dq1 m  O0qa m dq m m)’
Return to the 1-body equation (24), which in terms of f; and f5 is given by
O _ Of: OVia _Oh
o Uy = / Mo p a0t |, (40)
In the steady state, Eqs. (37) and (39) gives us
{%_%}.8%2:%.0’1_”) (41)
op1  Opz2| Oqp oq m m
df2 6fz} IVia / Ofs OViz / 0 f2 (p1 p2>
— [ar,| 22 92\, — [ar, 22 . — [ar, 22 . (P1_ P23 42
/ ? [31)1 op2 J0q 23P1 dq ? dq m m ( )

The first equality in Eq. (42) is obtained by noting that the second term is a total derivative in ps, which is integrated
over. Thus, the second equality of Eq. (42) allows us to replace the right-hand side of Eq. (40), yielding

of1

ot

1

coll. m

/dsqd?’pz%{; : (Pl - P2) . (43)

Keep in mind that q = q; — q2 is the separation between coordinates 1 and 2.
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