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These notes are largely a conglomeration of the previous years’ recitation notes by Julien Tailleur, Amer Al-Hiyasat,
and Sara Dal Cengio.

References. All the essential information in these recitations can be found in Chapter 3 of Mehran Kardar’s Statistical
Physics of Particles. Also see lectures 7-9 of his 8.333 OCW notes, and lectures 4-10 of Julien Tailleur’s notes.
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I. INTRO, DEFINITIONS AND NOTATIONS

We are concerned with extremely the high-dimensional problem of many-particle (N ≳ 1023) Hamiltonian dynamics.
How do we reduce the complicated microscopic dynamics to the simpler evolution of macroscopic quantities?

Work with N particles in 3 dimensions. Suppose particle i has position qi = (qx1 , q
y
1 , q

z
1) and momentum pi =

(px1 , p
y
1, p

z
1). (On the blackboard, I use replace the boldfaced letter with the arrow version, i.e. qi → q⃗i.) Use the

notation

Q ≡ (q1,q2, . . . ,qN ) , P ≡ (p1,p2, . . . ,pN ) , Γ ≡ (q1, . . . ,qN ,p1, . . . ,pN ) . (1)

Also make the definitions

qij ≡ qi − qj , qij ≡ |qij | , pi ≡ |pi| , dΓi ≡ d3qid
3pi . (2)

The particles evolve under Hamiltonian dynamics with the Hamiltonian

H(Q,P) =

N∑
i=1

[
p2i
2m

+ U(qi) +
1

2

∑
j ̸=i

V (qij)

]
≡ H1(Q,P) +

1

2

N∑
i=1

∑
j ̸=i

V (qij) . (3)

In particular, we consider a two-body interaction potential V (q) which is spherically symmetric, i.e. only depending
on q rather than q. Also define

Ui ≡ U(qi) , Vij ≡ V (qij) . (4)

We will use the Poisson bracket, which for operators A(Q,P) and B(Q,P) is defined as

{A,B} ≡
N∑
i=1

[
∂A

∂qi
· ∂B
∂pi

− ∂A

∂pi
· ∂B
∂qi

]
=

∂A

∂Q
· ∂B
∂P

− ∂A

∂P
· ∂B
∂Q

. (5)

It has the following properties (for operators A,B,C and scalar λ), which we will use:

{B,A} = −{A,B} (antisymmetry) (6)

{A,B + λC} = {A,B}+ λ{A,C} (bilinearity) (7)

{A+ λC,B} = {A,B}+ λ{C,B} (bilinearity) . (8)
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II THE BBGKY HIERARCHY

The probability density over phase space ρ(Q,P; t) is the probability density of particles at phase space point (Q,P)
at time t. It evolves according to the Liouville equation, whose derivation proceeds as follows:

0 =
dρ

dt
(Liouville theorem) (9)

=
∂ρ

∂t
+ Q̇ · ∂ρ

∂Q
+ Ṗ · ∂ρ

∂P
=

∂ρ

∂t
+

∂H

∂P
· ∂ρ

∂Q
− ∂H

∂Q
· ∂ρ

∂P
=

∂ρ

∂t
+ {H, ρ} (10)

=
∂ρ

∂t
+ {H1, ρ}+

1

2

N∑
i=1

∑
j ̸=i

{Vij , ρ} (Bilinearity of Poisson bracket) . (11)

The last term can be re-written by re-indexing and using the symmetry of Vij = Vji:

1

2

N∑
i=1

∑
j ̸=i

{Vij , ρ} =
1

2

N∑
i=1

∑
j ̸=i

N∑
k=1

∂Vij

∂qk
· ∂ρ

∂pk
=

1

2

N∑
i=1

∑
j ̸=i

[
∂Vij

∂qi
· ∂ρ

∂pi
+

∂Vij

∂qj
· ∂ρ

∂pj

]
=

N∑
i=1

∂ρ

∂pi
·
∑
j ̸=i

∂Vij

∂qi
. (12)

Thus, we find the Liouville equation

∂ρ

∂t
+ {ρ,H1} =

N∑
i=1

∂ρ

∂pi
·
∑
j ̸=i

∂Vij

∂qi
(Liouville’s equation) (13)

The left-hand side includes the one-body effects, such as advection due to the P and the flows under U . The right-hand
side accounts for transfer of probability due to interactions. The Liouville equation is exact.

II. THE BBGKY HIERARCHY

The Liouville equation (13) for the probability density over the 6N -dimensional phase space contains way too much
information. We are interested in macroscopic quantities, like the average kinetic energy of the gas

K.E. ≡
〈

1

N

N∑
i=1

p2i
2m

〉
=

1

m
⟨p21⟩ =

1

m

∫ N∏
i=1

dΓiρ(Q,P; t)p21 ≡ 1

m

∫
dΓ1ρ1(q1,p1; t)p

2
1 , (14)

where we have used the indistinguishability of the particles, and defined the 1-body probability density as the marginal
probability density

ρ1(q1,p1; t) ≡
∫ N∏

i=2

dΓiρ(Q,P; t) . (15)

Observables like Eq. (14) are one-body properties, which only require ρ1, which is over a space of much lower dimension.
Thus, it is sensible to look for the evolution of ρ1.

Using the Liouville equation (13), we find

∂ρ1
∂t

=

∫ ∏
i≥2

dΓiρ(Q,P; t) =

∫ ∏
i≥2

dΓi

[
{H1, ρ}︸ ︷︷ ︸
≡ 1

+

N∑
j=1

∂ρ

∂pj
·
∑
k ̸=j

∂Vjk

∂qj︸ ︷︷ ︸
≡ 2

]
. (16)

Calculating each term individually, we have

1 =

∫ ∏
i≥2

dΓi

[(
∂H1

∂q1
· ∂ρ

∂p1
− ∂H1

∂p1
· ∂ρ

∂q1

)
︸ ︷︷ ︸

≡ 1a

+
∑
j≥2

(
∂H1

∂qj
· ∂ρ

∂pj
− ∂H1

∂pj
· ∂ρ

∂qj

)
︸ ︷︷ ︸

≡ 1b

]
(17)
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II THE BBGKY HIERARCHY

Because ∂H1/∂q1 and ∂H1/∂p1 only depend on q1 and p1, the integral over q2,q3, etc. and p2,p3, etc. passes
through it, and we have

1a =
∂H1

∂q1
· ∂ρ1
∂p1

− ∂H1

∂p1
· ∂ρ1
∂q1

= {H1, ρ1} . (18)

For part 1b , we use the fact that ∂H1/∂qj doesn’t depend on pj , and ∂H1/∂pj doesn’t depend on qj to write

1b =

∫ ∏
i≥2

dΓi

∑
j≥2

[
∂

∂pj
·
(
∂H1

∂qj
ρ

)
− ∂

∂qj
·
(
∂H1

∂pj
ρ

)]
= 0 , (19)

since the integral over a total derivative is zero (assuming there are no boundary terms, which is true for either
periodic boundary conditions or a normalizeable ρ in open boundary conditions!).

Term 2 , the interaction term, is also simplified by splitting the indices between j = 1 and j > 1:

2 =

∫ ∏
i≥2

dΓi

[
∂ρ

∂p1
·
∑
k ̸=1

∂V1k

∂q1︸ ︷︷ ︸
≡ 2a

+
∑
j≥2

∂ρ

∂pj
·
∑
k ̸=j

∂Vjk

∂qj︸ ︷︷ ︸
≡ 2b

]
(20)

Term 2a can be simplified using the indistinguishability of particles k ̸= 1:

2a =

∫ ∏
i≥2

dΓi
∂ρ

∂p1
· ∂V12

∂q1
≡ (N − 1)

∫
dΓ2

∂ρ2
∂p1

· ∂V12

∂q1
, (21)

where we have defined the 2-body probability density

ρ2(q1,q2,p1,p2; t) ≡
∫ ∏

i≥3

dΓiρ(Q,P; t) . (22)

Finally, term 2b is zero for the same reason as term 1b (19):

2b =

∫ ∏
i≥2

dΓi

∑
j≥2

∂

∂pj
·
(
ρ
∑
k ̸=j

∂Vjk

∂qj

)
= 0 . (23)

Thus, we find the overall 1-body evolution equation

∂ρ1
∂t

+ {ρ1, H1} = (N − 1)

∫
dΓ2

∂ρ2
∂p1

· ∂V12

∂q1
. (24)

This contains much less information than the Liouville equation (13). It is almost closed in ρ1, but has the annoying
ρ2-dependence on the right-hand side. Intuitively, this is because the probability density of a single particle can’t be
understood without accounting for the joint probability density of it encountering another particle. Unfortunately,
ρ2(q1,q2,p1,p2) ̸= ρ1(q1,p1)ρ1(q2,p2) since the particles are not independent. For example, for repulsive interac-
tions, ρ2(q,q,p,p

′) < ρ1(q,p)ρ1(q,p
′) since having one particle at location q makes it less likely to have another

particle there.

To find the evolution of ρ2, we can make a similar calculation to Eqs. (16)-(24). Sparing you the details, the final
answer is

∂ρ2
∂t

+ {ρ2, H1 + V12} = (N − 2)

∫
dΓ3

[
∂ρ3
∂p1

· ∂V13

∂q1
+

∂ρ3
∂p2

· ∂V23

∂q2

]
. (25)

The 2-body equation contains dependence on the 3-body density. Likewise, the evolution of the 3-body density will
depend on the 4-body density, and so on. This is the BBGKY hierarchy. Because we are only interested in macroscopic,
few-body obervables, we must truncate this hierarchy somewhere, using some physically-motivated approximation.
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III. THE BOLTZMANN EQUATION

Let’s define the number densities

f1(q1,p1, t) ≡ Nρ1(q1,p1; t) (26)

f2(q1,q2,p1,p2, t) ≡ N(N − 1)ρ2(q1,q2,p1,p2; t) (27)

...

fs(q1, . . . ,qs,p1, . . . ,ps, t) ≡
N !

(N − s)!
ρs(q1, . . . ,qs,p1, . . . ,ps; t) . (28)

These are no longer probability densities. The normalization condition for f1 is, for example,∫
dΓ1f1(q1,p1, t) = N . (29)

Now let’s write out the 2-body equation for f2(q1,q2,p1,p2) explicitly:

ḟ2 +
∂f2
∂q1

· p1

m
+

∂f2
∂q2

· p2

m︸ ︷︷ ︸
≡ 1

−
[
∂f2
∂p1

· ∂U1

∂q1
+

∂f2
∂p2

· ∂U2

∂q2

]
︸ ︷︷ ︸

≡ 2

−
[
∂f2
∂p1

− ∂f2
∂p2

]
· ∂V12

∂q1︸ ︷︷ ︸
≡ 3

=

∫
dΓ3

[
∂f3
∂p1

· ∂V13

∂q1
+

∂f3
∂p2

· ∂V23

∂q2

]
︸ ︷︷ ︸

≡ 4

,

(30)

where we have used the fact that ∂V12/∂q2 = −∂V12/∂q1.

We will now use dimensional analysis to guess which terms from this equation are the most important. For a gas at
room temperature, there are a convenient series of scale separation that make this easy. (This is where the applicability
of these calculations to other many situations—e.g. astrophysics—breaks down, since long-range interactions and
higher densities mess things up.)

Air molecules at room temperature have typical velocities of v ≈ 102m/s and interaction radii of d ≈ 10−10m. Thus,
the time it takes a collision to occur τc ≈ d/v ≈ 10−12s is very small compared to, say, the time it takes a molecule to
cross a box U(q) of length 1m, τU ≈ L/v ≈ 10−2s. The density of air is also very low: n ≡ N/V ≈ 1026/m3 ≪ 1/d3.
Thus, the distance a particle typically travels between collisions, ℓMF or the “mean-free path”, is large compared
to d. This can be estimated by considering the volume ℓMFπd

2 swept out by a particle traveling this distance, and
comparing it to the typical volume one must search before encountering a particle, V/N :

ℓMFπd
2 ≈ V

N
=⇒ ℓMF ≈ 1

nd2
. (31)

This is given by ℓMF ≈ 10−6m. The mean-free time is then given by τMF = ℓMF/v ≈ 10−8m.

We have found three processes, each well-separated from the other in terms of length and time-scales:

τc ≪ τMF ≪ τU , d ≪ ℓMF ≪ ℓU . (32)

These are summarized by the following table:

Process Length scale Time scale

Collisions d ≈ 10−10m τc ≈ 10−12s

Free motion
between collisions

ℓMF ≈ 10−6m τMF ≈ 10−8s

Effects of U(q) ℓU ≈ 1m τU ≈ 10−2s

The Boltzmann equation, which we will now derive, exploits these two separations of length and time scale.

Now let’s return to Eq. (30) and examine it term-by-term. All terms have dimension T−1N2L−6. Let V , U , and KE
indicate the energy scales of V (q), U(q), and p2i /2m respectively. Also suppose that the system size is comparable to
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III THE BOLTZMANN EQUATION

ℓU , so that f2 ∼ (N/ℓ3U )
2. Finally, define a new “length scale of interest” ℓ ≪ ℓU , such that ∂f2/∂qi ∼ f2/ℓ. We find

the approximate scaling of each term

1 ∼ KE

(
N

ℓ3U

)2
1

ℓ

1

mv
(33)

2 ∼ U
1

ℓU

(
N

ℓ3U

)2
1

mv
∼ U

KE

ℓ

ℓU
1 ≪ 1 (34)

3 ∼ V
1

d

(
N

ℓ3U

)2
1

mv
(35)

4 ∼
∫

V
1

d

(
N

ℓ3U

)3

∼ V d3
1

d

(
N

ℓ3U

)3
1

mv
∼ N

d3

ℓ3U
3 ≪ 3 (36)

We can thus eliminate term 2 , since the gradients of the external potential are chosen to be significantly smaller
than those of f2 (and the potential energy U is at most comparable with the kinetic energy). We can also, crucially,
eliminate term 4 , since it is smaller than term 3 by a factor of nd3 ∼ 10−4 ≪ 1. Since 4 contains all the
f3-dependence, we have thus truncated the BBGKY hierarchy.

We are left with the new equation

ḟ2 =

[
∂f2
∂p1

− ∂f2
∂p2

]
· ∂V12

∂q1
− ∂f2

∂q1
· p1

m
− ∂f2

∂q2
· p2

m
, (37)

where the = sign should really be an ≈ but we will (semi-phenomenologically) pretend the strict equality holds from
now on.

Let’s simplify ∂f2/∂qi further. We can change the coordinates q1, q2 to q+ ≡ (q1+q2)/2 and q ≡ q1−q2, and note
that (suppressing the p dependence)

∂f2
∂q1

= 2
∂f2
∂q+

+
∂f2
∂q

,
∂f2
∂q2

= 2
∂f2
∂q+

− ∂f2
∂q

. (38)

Since the gradient f2 with respect to q is of the order 1/d while variations with respect to q+ are the inverse of a
meso- or macroscopic lengthscale (e.g. ∼ 1/ℓ), we can neglect the ∂/∂q+ terms, and approximate

∂f2
∂q1

≈ ∂f2
∂q

,
∂f2
∂q2

≈ −∂f2
∂q

=⇒ ∂f2
∂q1

· p1

m
+

∂f2
∂q2

· p2

m
≈ ∂f2

∂q
·
(
p1

m
− p2

m

)
. (39)

Return to the 1-body equation (24), which in terms of f1 and f2 is given by

∂f1
∂t

+ {f1, H1} =

∫
dΓ2

∂f2
∂p1

· ∂V12

∂q1
≡ ∂f1

∂t

∣∣∣∣
coll.

. (40)

In the steady state, Eqs. (37) and (39) gives us[
∂f2
∂p1

− ∂f2
∂p2

]
· ∂V12

∂q1
=

∂f2
∂q

·
(
p1

m
− p2

m

)
(41)

=⇒
∫

dΓ2

[
∂f2
∂p1

− ∂f2
∂p2

]
· ∂V12

∂q1
=

∫
dΓ2

∂f2
∂p1

· ∂V12

∂q1
=

∫
dΓ2

∂f2
∂q

·
(
p1

m
− p2

m

)
. (42)

The first equality in Eq. (42) is obtained by noting that the second term is a total derivative in p2, which is integrated
over. Thus, the second equality of Eq. (42) allows us to replace the right-hand side of Eq. (40), yielding

∂f1
∂t

∣∣∣∣
coll.

=
1

m

∫
d3qd3p2

∂f2
∂q

· (p1 − p2) . (43)

Keep in mind that q = q1 − q2 is the separation between coordinates 1 and 2.
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